COMPLIANCE OF SAGA SOLAR AIRFIELD LIGHTING WITH INTERNATIONAL AVIATION REGULATIONS ## **Table of Contents** | Introduction | 3 | |---|----| | Chapter 1. Compliance of SP-401 Airfield Lights | 4 | | SP-401 Unit as the key component of S4GA Airfield Lighting System | 4 | | Photometric Compliance | 5 | | Chromaticity Compliance | 6 | | Jet Blast Resistance Compliance | 7 | | Frangibility Compliance | 8 | | Secondary Power Supply Compliance | 9 | | Electromagnetic Compatibility Compliance | 10 | | Chapter 2. Compliance of S4GA ALCMS - Airfield Lighting Control and Monitoring System | 11 | | Compliance of ALCMS Software | 11 | | Compliance of ALCMS Hardware | 13 | | Chapter 3. Compliance of S4GA Solar Light and Control System with FAA requirements | 15 | | Chapter 4. Compliance of S4GA Solar Light and Control System with CASA/MOS requirements | 18 | | Summary | 21 | | International Aviation Documents | 22 | ### **Introduction** #### S4GA delivers World's Safest Runway Lighting S4GA is a state-owned company that designs, manufactures, and supplies certified airfield lighting systems to civil and military customers worldwide. The Company Head Office, manufacturing facilities and training centres are located in Poland. S4GA is **ISO 9001:2015 certified** Company. We offer AGL solutions for all types of airports – from huge international hubs to small local airstrips. The Company also serves remote helipads and temporary landing zones. The Company offers the following types of airfield lighting systems: - Solar permanent airfield lighting - Portable emergency runway lighting - Helipad lighting. As at 2020, S4GA has delivered over 125 projects in 50 different countries on all continents. We have installed our systems in Latin America, Africa, Europe and Southeast Asia. We delivered permanent, backup and emergency runway lighting. Our systems are used by military and civilian airports of all sizes. All S4GA airfield lighting products are compliant with international aviation regulations. Lighting fixtures have passed multiple tests and are certified by independent accredited laboratories. This document is a guidance to S4GA airfield lighting compliance with the key norms of ICAO, FAA and other international aviation institutions. ### **CHAPTER 1. Compliance of SP-401 Airfield Lights** # SP-401 Unit as the key component of S4GA Airfield Lighting System SP-401 airfield light is the key component of S4GA system. It is an intelligent, remotely controlled airfield lighting fixture powered by an integrated power bank. The light is designed to operate in harsh weather conditions and can withstand desert high temperatures, tropical high humidity climate, and Arctic frozen. SP-401 Lighting Unit is an elevated light mounted to the runway surface with frangible mounting. Figure 1.1. SP-401 Solar Airfield Light Figure 1.2. Airfield lighting layout with SP-401 Lighting Units SP-401 lighting unit goes in two versions: portable and solar. Portable version of the light is applicable for temporary usage; it has 15 days of autonomy and is charged via a stationary charger. Solar version of SP-401 is equipped with solar panel and powered by solar energy. Rapid charging technology used in S4GA lights provides 365 days a year of light autonomy. It is designed for permanent applications. Figure 1.3. Technical drawings of SP-401 Solar and Portable Airfield Lights SP-401 lighting unit is compliant with norms and regulations issued by International Civil Aviation Organization, Federal Aviation Administration, European Parliament and the Council. To confirm the compliance, we performed multiple tests of our products by independent institutions such as Intertek Laboratory, Laborex Research Laboratory, Warsaw Institute of Aviation, EMAG Institute of Innovative Technologies, Military Institute of Armament Technology. S4GA lights have successfully passed testing of photometric & chromaticity, jet blast & wind velocity resistance, frangibility, ingress protection, electromagnetic compatibility. The Company holds test reports, test verification of conformity reports, and declarations of conformity accordingly. In this document, the key aviation norms and S4GA compliance are given: - 1. Photometric compliance - 2. Chromaticity compliance - 3. Jet blast resistance compliance - 4. Frangibility compliance - 5. Secondary power supply compliance - 6. Electromagnetic compatibility. #### **Photometric Compliance - ICAO** Photometry is the measure of light output. Photometric of airfield lights is predefined and regulated by ICAO Annex 14 Volume I Aerodrome Design and Operations and additionally by EASA CS ADR-DSN. There are different photometric requirements for different types of airfield lights. Photometric is measured in candelas. For example, for runway edge light installed at non-precision runways, the minimum photometric requirement is 50 cd; for taxiway edge light it is 2 cd. SP-401 airfield light exceeds ICAO photometric norms. LED optics of Runway Edge Light provides 1.200 cd light output which is the highest light output on low- and medium-intensity airfield lighting market. Figure 1.4. Photometric Test Results for SP-401 Runway Edge Light, Intertek Photometric of SP-401 airfield lights have been tested at Intertek Laboratory. All types of lights – runway edge light, threshold light, runway end light, and other types of lights – have passed the tests. S4GA holds Intertek Test Reports that are available on request. In the table below, the following information is provided: - Photometric requirements given in ICAO Annex 14 Volume I, 7th Edition for all types of lights available in S4GA - Photometric specifications of SP-401 lights - Compliance of SP-401 lights Table 1.1. Compliance of SP-401 lights with ICAO Annex 14 and EASA CS ADR-DSN photometric requirements | ICAO
Clause/Figure/
Appendix | EASA
Clause/Figure/
Appendix | Requirements | S4GA Specification | Test Verification
Report | S4GA
Compliance | |--|---|--|--|---|--------------------| | ICAO Annex 14
Clause 5.3.4.8 &
5.3.4.9 | | Simple approach lighting system Recommendation.— Where provided for a non-instrument runway, the lights should show at all angles in azimuth necessary to a pilot on base leg and final approach. The intensity of the lights should be adequate for all conditions of visibility and ambient light for which the system has been provided. | SP-401 Approach Light
Light Output (directional): 1 800 cd
Optics: 1 Unidirectional type
(for extended visibility range)
Optics 2: Omni-directional
(for circuiting guidance)
Color: White | | | | ICAO Annex 14
Clause 5.
3.8.3 & 5.3.8.4 | CS ADR-DSN.M.670
Runway threshold
identification lights,
point c-1, c-2 | Runway threshold identification lights should be flashing white lights with a flash frequency between 60 and 120 per minute. The lights shall be visible only in the direction of approach to the runway | SP-401 Runway Threshold
Identification Light
Light Output (unidirectional); 1 200 cd
Color: White
Flash frequency; 94 FPM | Laboratory: Intertek
Accredited: Yes
Date of report:
23.08.2019
Number of report:
190800581HZH-
002 | MEETS | | ICAO Annex 14
Clause 5.3.9.8 &
5.3.9.9 | CS ADR-DSN.M.675
Runway edge lights,
points c-2, d | Runway edge light – the intensity
shall be at least 50 cd | SP-401 Runway Edge Light
Light Output (directional): 1 200 cd
Optics: 1 Unidirectional type
(for extended visibility range)
Optics 2: Omn-directional
(for circuiting guidance)
Color: White | Laboratory: Intertek
Accredited: Yes
Date of report:
26.03.2019
Number of report:
180400427HZH-
010 | EXCEEDS | | | | | | | | | | CS ADR-DSN.M.680
Runway threshold
and wing bar lights,
point e-1 | Runway threshold and wing bar
lights shall be fixed unidirectional
lights showing green in the direction
of approach to the runway | SP-401 Runway Threshold Light
Light Output (unidirectional): 450 cd
Color: Green | Laboratory: Intertek
Accredited: Yes
Date of report:
20.08.2018
Number of report:
180400427HZH-
004 | MEETS | | | CS ADR-DSN.M.680
Runway threshold
and wing bar lights,
point e-2
CS ADR-DSN.U.940
Aeronautical
ground light
characteristics,
Figure U-7 | Runway threshold lights on a precision approach runway shall be in accordance with the specifications of Appendix 2, Figure A2-3. | SP-401 High Intensity Runway
Threshold Light
Light Output (directional): 11 400 cd
Color: Green | | | | ICAO Annex 14
Clause 5.3.11.4 | CS ADR-DSN.M.685
Runway end lights,
point c-1 | Runway end lights shall be fixed
unidirectional lights showing red in
the direction of the runway | SP-401 Runway End Light
Light Output (unidirectional): 320 cd
Color: Red | Laboratory: Intertek
Accredited: Yes
Date of report:
20.08.2018
Number of report:
180400427HZH-
003 | MEETS | | | | Runway
end lights on a precision approach runway shall be in accordance with the specifications of Appendix 2, Figure A2-8. | SP-401 High Intensity Runway End
Light
Light Output (directional): 2 700 cd
Color: Red | | | | ICAO Annex 14
Clause 5.3.18.7 &
5.3.18.8 | CS ADR-DSN.M.720
Taxiway edge lights,
points c-1, c-2, c-3 | Taxiway edge lights shall be fixed lights showing blue. The intensity of taxiway edge lights shall be at least 2 cd from 0° to 6° vertical, and 0.2 cd at any vertical angles between 6° and 75°. | SP-401 Taxiway Edge Light
Light Output: ICAO Compliant (max.
Intensity 11 cd)
Optics Omnidirectional, blue | Laboratory: Intertek
Accredited: Yes
Date of report:
26.03.2019
Number of report:
180400427HZH-
009 | EXCEEDS | | | | Runway threshold lights on a precision approach runway On the perimeter of and within the ellipse defining the main beam in Appendix 2, Figures A2-1 to A2-10, the maximum light intensity value shall not be greater than three times the minimum light intensity value measured in accordance with Appendix 2, collective notes for Figures A2-1 to A2-11 and A2-26, Note 2. | Applicable to:
SP-401 High Intensity Runway Edge
Light
SP-401 High Intensity Threshold Light
SP-401 High Intensity Runway End
Light | | | #### **Chromaticity Compliance** Chromaticity is the specification of the colour of light output. Different types of airfield lights should be of different colours to be easily identified by pilots. For example, runway edge light has to be white and taxiway light has to be blue. Bluish runway edge lights might mislead pilot during landing and cause catastrophic consequences. Chromaticity requirements to airfield lights are given in ICAO Annex 14, Volume I. SP-401 lights have been tested in Intertek Laboratory. The lights have passed chromaticity tests for all types of applications: approach, runway edge, threshold, runway end, RTIL, taxiway. Table 1.2. Compliance of SP-401 lights with ICAO Annex 14 and EASA CS ADR-DSN chromaticity requirements | ICAO
Clause/Figure/Ap
pendix | EASA
Clause/Figure/Appe
ndix | Requirements | S4GA Specification | Test Verification Report | S4GA
Compliance | | |--|---|---|--|--|--|--| | | | Runway approach light - white | | | | | | | | Runway threshold identification light - white | | Laboratory: Intertek
Accredited: Yes
Date of report: 23.08.2019
Number of report:
190800581HZH-002 | | | | | | Runway edge light – white | SP-401 Runway Edge Light
Color: white | Laboratory: Intertek
Accredited: Yes
Date of report: 26.03.2019
Number of report:
180400427HZH-010 | MEETS | | | | CS ADR-DSN.U.930
Colours for
aeronautical ground
lights
Figure U-1B | Runway edge light (precision
approach runways) – white | | Laboratory: Intertek
Accredited: Yes
Date of report: 27.03.2019
Number of report:
180400427HZH-013 | | | | ICAO Annex 14
Appendix 1,
Figure A1-1b | | Threshold Light – green | | | | | | | | | Threshold Light (precision approach runways) – green | | Laboratory: Intertek
Accredited: Yes
Date of report: 23.08.2019
Number of report:
190800581HZH-003 | | | | | Runway End light – red | SP-401 Runway End Light
Color: red | Laboratory: Intertek
Accredited: Yes
Date of report: 20.08.2018
Number of report:
180400427HZH-003 | MEETS | | | | | | | | | | | | | Taxiway edge light - blue | SP-401 Taxiway Edge Light
Color: blue | Laboratory: Intertek
Accredited: Yes
Date of report: 26.03.2019
Number of report:
180400427HZH-009 | MEETS | | #### **Jet Blast Resistance Compliance** The jet blast resistance is the ability of airfield lights to withstand jet blast, propeller wash, and surface wind gusts. There are two main documents that specify and regulate jet blast resistance: - ICAO Aerodrome Design Manual, Doc 9157 - FAA AC 150/5345-50B Specification For Portable Runway And Taxiway Lights. The same documents regulate resistance of airfield lights to wind velocity (or wind speed). Figure 1.5. SP-401 Solar Airfield Light during testing of jet blast resistance in Warsaw Institute of Aviation ICAO requires maximum wind speed resistance of 240 kilometers per hour for low-intensity airfield lights. SP-401 units have been tested on jet blast in Warsaw Institute of Aviation, Laboratory of Aerodynamics. Both portable and solar airfield lights have successfully passed the tests and can withstand 240 km/h wind speed. Table 1.3. Compliance of SP-401 lights with jet blast requirements of ICAO and FAA | Autho-
rity | Document | Clause/Figure/App
endix | Requirements | S4GA
Specification | Test Verification Report | S4GA
Compliance | |----------------|------------------|---|--|---|---|--------------------| | 10.1.0 | Aerodrome Design | Clause 3.2.2 | Should withstand normal wind
loading of 140 km/h; and
should be capable of surviving
a higher level of wind speed -
210 km/h | All S4GA lights
can withstand
240 km/h wind
loading | Laboratory: Warsaw Institute
of Aviation
Accredited: Yes
Date of report: 17.12.2019
Number of report:
41/CNTA/19/P | EXCEEDS | | | Clause 4.9.1 | Should withstand 240 km/h
(for low intensity lights) | All S4GA lights
can withstand
240 km/h jet
blast | Laboratory: Warsaw Institute
of Aviation
Accredited: Yes
Date of report: 17.12.2019
Number of report:
41/CNTA/19/P | MEETS | | | FAA | | | Exposure to wind speeds up to
150 mph (240 km/h) from any
direction | | | | #### **Frangibility Compliance** Frangibility of airfield light is the ability to withstand a particular bending force on one side, and ability to be broken at a particular bending moment on the other side. This requirement is applicable only for elevated type of airfield lights. It is predefined and regulated by ICAO and FAA documents: - ICAO Aerodrome Design Manual, Doc 9157 - ICAO Annex 14, Volume I - EASA GM1 ADR-DSN.T.910 Equipment frangibility requirements - FAA AC 150-5345-46E Specification For Runway And Taxiway Light Fixtures - FAA AC 150 5220-23 Frangible Connections. ICAO requirement is 'the yield point should withstand a bending moment of 204 J without failure but should separate cleanly from the mounting system before the bending moment reaches 678 J'. Figure 1.6. S4GA Frangible coupling during testing of frangibility in Institute of Research and Certification Frangible coupling for SP-401 airfield lights has been tested in Laborex Research Laboratory. The test confirmed that the yield point separates from the mounting system at 306 J – which is compliant with ICAO requirements. Table 1.4. Compliance of SP-401 lights with ICAO and EASA frangibility requirements | Document | Clause/Figure
/Appendix | Requirements | S4GA Specification | Test Verification Report | S4GA
Compliance | |--|----------------------------|---|--|---|--------------------| | Aerodrome
Design Manual,
Doc 9157, Part 6
Frangibility | Clause 4.9.25 | The yield point should withstand a bending moment of 204 J without failure but should separate cleanly from the mounting system before the bending moment reaches 678 J | Yield point separates
from the mounting
system at 306 J | Institute of Research and
Certification (Poland)
Accredited: Yes
Date of report: 19.03.2021
Number of report: LL/039/2021 | MEETS | | Annex 14,
Volume I, 7th
Edition | | Light fixtures and supporting structures Note. — See 9.9 for information regarding siting of equipment and installations on operational areas, and the Aerodrome Design Manual (Doc 9157), Part 6, for guidance on frangibility of light fixtures and supporting structures. | Frangible yield point of
mounting for SP-401
Airfield Light
separates from the
mounting system at
306 J | Institute of Research and
Certification (Poland)
Accredited: Yes
Date of report: 19 03 2021
Number of report: LL/039/2021 | MEETS | | GM1 ADR-
DSN.T.910
Equipment
frangibility
requirements | | (a) Equipment and supports required to be frangible should be
designed and constructed so that they should break, distort, or yield in the event that they are accidentally impacted by an aircraft [] (b) Frangible structures should be designed to withstand the static and operational wind or jet blast loads with a suitable factor of safety but should break, distort, or yield readily when subjected to the sudden collision forces of a 3 000 kg aircraft airborne and travelling at 140 km/h (75 kt), or moving on the ground at 50 km/h (27 kt). (c) Guidance on design for frangibility is contained in ICAO Doc 9157, Aerodrome Design Manual, Part 6, Frangibility. | Frangible yield point of
mounting for SP-401
Airfield Light
separates from the
mounting system at
306 J | Institute of Research and
Certification (Poland)
Accredited: Yes
Date of report: 19.03.2021
Number of report: LL/039/2021 | MEETS | Table 1.5. Compliance of SP-401 lights with FAA frangibility requirements | Document | Clause/Figure
/Appendix | Requirements | S4GA
Specification | Test Verification Report | S4GA
Compliance | |---|----------------------------|--|---|---|--------------------| | FAA AC 150-
5345-46E
Specification
For Runway
And Taxiway
Light Fixtures | | | | | MEETS | | FAA AC 150
5220-23
Frangible
Connections | Clause 3.2 | [Short version] Equipment located in airfield safety areas must
be mounted on frangible supports to ensure the structure will
break, distort, or yield in the event of an accidental impact by an
aircraft. | SP-401 light is
equipped with
frangible
mounting | Institute of Research and
Certification (Poland)
Accredited: Yes
Date of report:
19.03.2021
Number of report:
LL/039/2021 | MEETS | #### **Secondary Power Supply Compliance** Traditional airfield lighting system is powered by 6.6A electrical circuit. The circuit is energized by a single power source. In ICAO documents this source is called primary power supply. In some cases, airport can lose primary power supply (failure at city power plant, substation fire, loss of constant current regulators, cable damage). As a result, airfield lighting stops working and airport becomes partially or completely unavailable for flight operations. In order to prevent such situation, airport should have a backup – or secondary – power supply. ICAO regulates secondary power supply, and provides requirements in ICAO Annex 14 Volume I. According to ICAO, secondary power supply should be either an independent power source able to be connected to the primary airfield lighting system via cables; or standby power units such as generators or batteries. SP-401 lighting unit is compliant with ICAO norms. It is equipped with two independent built-in batteries. Battery #1 is used as the primary power source for SP-401 light. Battery #2 is used when the primary battery is discharged or unavailable. Switch-over time is 0 sec. Figure 1.7. Power bank integrated into SP-401 Airfield Light Table 1.6. Compliance of SP-401 lights with ICAO Annex 14 and EASA CS ADR-DSN requirements on secondary power supply | ICAO, Annex 14
Clause/Figure/
Appendix | EASA
Clause/Figure/Appendix | Requirements | S4GA Specification | S4GA Compliance | |--|--|--|---|-----------------| | Clause
8.1.8-8.1.9 | CS ADR-DSN.S.880
Electrical power supply
systems, point a, c | Recommendation.— At an aerodrome where the primary runway is a non-precision approach runway, a secondary power supply capable of meeting the requirements of Table 8-1 should be provided except that a secondary power supply for visual aids need not be provided for more than one non-precision approach runway. Recommendation.— At an aerodrome where the primary runway is a non-instrument runway, a secondary power supply capable of meeting the requirements of 8.1.4 should be provided, except that a secondary power supply for visual aids need not be provided when an emergency lighting system in accordance with the specification of 5.3.2 is provided and capable of being deployed in 15 minutes. | SP-401 light is equipped with 2 x batteries. One battery is used as primary power source. The second battery is used as backup power source. In case of failure switchover time to secondary power source is less than 1 sec. | MEETS | | Clause 8.1.11 | | Recommendation.— Requirements for a secondary power supply should be met by either of the following: — independent public power, which is a source of power supplying the aerodrome service from a substation other than the normal substation through a transmission line following a route different from the normal power supply route and such that the possibility of a simultaneous failure of the normal and independent public power supplies is extremely remote, or — standby power unit(s), which are engine generators, batteries, etc., from which electric power can be obtained | SP-401 light is equipped with 2 x batteries. One battery is used as primary power source. The second battery is used as backup power source. Batteries, lead acid type | MEETS | #### **Electromagnetic Compatibility Compliance** Electromagnetic compatibility (EMC) is the ability of electronic equipment to function acceptably in electromagnetic environment and not to interfere other electronic devices located in the same environment. In simple words, if the elements of airfield lighting system communicate with each other via wireless network, they should not interfere with other airport systems such as ILS, VOR, DME. Electromagnetic compatibility is regulated by the European Parliament and the Council documents: - RED DIRECTIVE 2014/53/EU on the harmonization of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC - ROHS DIRECTIVE 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment. S4GA equipment has been tested on electromagnetic compatibility at Military Institute of Armament Technology. SP-401 lights as well as other electronic equipment successfully passed the tests. Figure 1.8. SP-401 Airfield Light during EMC testing in Military Institute of Armament Technology # **CHAPTER 2. Compliance of S4GA ALCMS - Airfield Lighting Control and Monitoring System** Table 1.7. Compliance of SP-401 lights with RED Directive Requirements | Document | Clause/Figure
/Appendix | Requirements | Test Verification Report | S4GA
Compliance | |--|---|---|--|--------------------| | RED DIRECTIVE 2014/53/EU on the harmonization of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC | Clause 3.1a | PN-EN 60950-1:2007 +A11:2009 +A1:2011 +A12:2011 +A2:2014 [EN 60950-
1:2006 +A11:2009 +A1:2010 +A12:2011 +A2:2013,
IDT]
PN-EN 62311:2010 [EN 62311:2008, IDT]
PN-EN 62479:2011 [EN 62479:2010, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019 | MEETS | | | PN-ETSI EN 301 489-1 V2.1.1:2017 [ETSI EN 301 489-1 V2.1.1:2017, IDT] PN-ETSI EN 301 489-3 V2.1.1:2019 [ETSI EN 301 489-3 V2.1.1:2019, IDT] PN-EN 61000-6-1:2019 [EN 61000-6-1:2019, IEC 61000-6-1:2016, IDT] PN-EN 61000-6-3:2008 +A1:2012 [EN 61000-6-3:2007 +A1:2011, IEC 61000-6-3:2006 +AMD1:2010, IDT], PN-EN 55032:2015 [EN 55032:2015, ICISPR 32:2015, ICIS] PN-EN IC 61000-3-2:2019 [EN IC 61000-3-2:2019, IEC 61000-3-2:2019, IDT] PN-EN 61000-3-3:2013 +A1:2019 [EN 61000-3-3:2013 +A1:2019, IEC 61000-3-3:2013 +AMD1:2017, IDT]; PN-EN 61000-4-2:2011 [EN 61000-4-2:2006, IDT] PN-EN 61000-4-3:2006 +A1:2008 +IS1:2009 +A2:2011 [EN 61000-4-3:2006 +A1:2008 +IS1:2009 +A2:2011 [EN 61000-4-3:2006 +A1:2013 [EN 61000-4-2:2010, IEC 61000-4-4:2012, IDT] PN-EN 61000-4-5:2014 +A1:2013 [EN 61000-4-5:2014 +A1:2017, IEC 61000-4-5:2014 +A1:2017, IDT]; PN EN 61000-4-5:2014 [EN 61000-4-6:2014, IEC 61000-4-6:2014, IEC 61000-4-6:2014, IDT] PN-EN 61000-4-1:2007 +A1:2007 [EN 61000-4-11:2004 +A1:2004 +A1:2017, IEC 61000-4-11:2004 +A1:2007 [EN 61000-4-11:2004 +A1:2004 +A1:2017, IEC 61000-4-11:2004 (ADD1:2017, IDT] | | Military Institute of
Armament Technology
Accredited: Yes
Report 1: 34/2019
Report 2: 18/2019 | MEETS | | | Clause 3.2 | PN-ETSI EN 300 220-1 V3.1.1:2017 [ETSI EN 300 220-1 V3.1.1:2017, IDT]
PN-ETSI EN 300 220-2 V3.2.1:2018 [ETSI EN 300 220-2 V3.1.1:2018, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Report 1: 34/2019
Report 2: 18/2019 | MEETS | | | | | | | Table 1.8. Compliance of SP-401 lights with RoHS Requirements | Document | Clause/Figure/App
endix | Requirements | Test Verification Report | S4GA
Compliance | |---|----------------------------|--|--|--------------------| | ROHS DIRECTIVE 2011/65/EU on
the restriction of the use of certain
hazardous substances in electrical
and electronic equipment | Clause 4.1 | PN-EN 50581:2013 [EN 50581:2012,
IDT] | Military Institute of Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019
Report 2: 18/2019 | MEETS | For control and monitoring of airfield lighting system, S4GA offers ALCMS. It provides full control and individual light status monitoring of S4GA airfield lights. ALCMS consists of two main components. UR-201 Control & monitoring Unit is a hardware; Computer interface is a software of S4GA ALCMS. Additionally, a Handheld Controller can be used for remote activation of S4GA systems. There are few documents that regulate different aspects of AGL control systems. **Requirements to software** are regulated by ICAO and FAA and given in the following documents: - ICAO Aerodrome Design Manual, Doc 9157, Part 5 Electrical Systems - ICAO Annex 14, Volume I, Chapter 8 Electrical Systems Figure 2.1. S4GA Computer interface (software of S4GA ALCMS) FAA AC 150/5345-56B, Specification for L-890 Airport Lighting Control and Monitoring System (ALCMS). **Requirements to hardware** are regulated by FAA and European Parliament and the Council in the following documents: - FAA AC 150/5345-56B - RED DIRECTIVE 2014/53/EU - ROHS DIRECTIVE 2011/65/EU S4GA ALCMS is compliant with all norms and regulations given in the above documents. Software and hardware equipment has been tested and certified accordingly. Test reports and certificates are available on request Figure 1.2. UR-201 Control & Monitoring Unit (hardware of S4GA ALCMS) #### **Compliance of ALCMS Software** Table 2.1. Compliance of S4GA ALCMS Computer Interface with ICAO Aerodrome Design Manual | Norm | Clause/Figure
/Appendix | Requirements | S4GA Specification | S4GA
Compliance | |-------------------------|--|---|---|--------------------| | | | 10.1 Apron Control Panel - separate control
system for Apron lights | S4GA ALCMS can be configured in various configurations allowing for MATER-SLAVE or MASTER/MASTER simultaneous operations from various locations (not necessary to be interconnected but optionally can be configured) | MEETS | | | | | | | | | | 10.3 Types of remote control systems - manual & computerized types of remote control system | S4GA ALCMS operates computerized control system based on radio communication (not cable) for Control | MEETS | | | | | | | | | | 10.5 Use of relays - relay panels used in case control circuit being long | S4GA ALCMS system use S4GA relays for control of remote power sources | | | Part 5 Electrical | Control &
Monitoring of
Aerodrome
Lighting
Systems | | S4GA ALCMS allows for grouping | | | Systems /
Chapter 10 | | 10.7 Automatic controls - automatization of circuit activation under certain conditions | S4GA ALCMS has automatic Dusk till dawn mode for all controlled groups | MEETS | | | | 10.8 Addressable lights - light fixtures are controlled individually | S4GA ALCMS has built in as standard individual light control | | | | | 10.9 Response time - change of operational status when control signal is sent | S4GA ALCMS has response time of max. 2 seconds | MEETS | | | | | S4GA ALCMS has built in as standard alarm messaging informing about lights/circuits faults | | | | | 10.11 Classes of monitors - passive or active monitor type | S4GA ALCMS has built capability for Active and
Passive monitor types | MEETS | | | | 10.12 Monitor override control - resetting control to maintain system operating level | S4GA ALCMS allows for Manual override of automatic condition | | | | | 10.14 ARCAL - activation of circuits by radio signal from aircraft | S4GA ALCMS is equipped with Air to ground activation (VHF or GSM) | | Table 2.2. Compliance of S4GA ALCMS Computer Interface with ICAO Annex 14, Volume I | Norm | Clause/Figure
/Appendix | Requirements | S4GA Specification | S4GA
Compliance | |------------------------------------|----------------------------|--|--------------------------------|--------------------| | Electrical
Systems
Chapter 8 | Part 8.3 | 8.3.1 Recommendation.— A system of monitoring should be employed to indicate the operational status of the lighting systems. | S4GA ACLMS serves that purpose | MEETS | | control purpo
monitored au
indication of a
control functi | ghting systems are used for aircraft
ses, such systems shall be
tomatically so as to provide an
any fault which may affect the
ons. This information shall be
relayed to the air traffic services | S4GA ALCMS has built in as standard alarm messaging informing about lights/circuits faults | MEETS | |---|--|--|-------| | operational st
indication sho
for a stop bar
within five sec
aids. | nendation.— Where a change in the
latus of lights has occurred, an
suld be provided within two seconds
at a runway-holding position and
conds for all other types of visual | S4GA ALCMS has response time of max. 2 seconds | MEETS | | use in runway
value of 550 r
Table 8-1 sho
as to provide
level of any el
serviceability
as appropriat | | | | | use in runway
value of 550 r
Table 8-1 sho
provide an ini
of any elemer
specified by t
which operati
information s | nendation.— For a runway meant for visual range conditions less than a m, the lighting systems detailed in uld be monitored automatically to dication when the serviceability level it falls below the minimum level he appropriate authority below ons should not continue. This hould be automatically relayed to services unit and displayed in a sition. | S4GA ALCMS can relay information automatically on pre-defined operational conditions | MEETS | Table 2.3. Compliance of S4GA ALCMS Computer Interface with and EASA CS ADR-DSN.S.890 | Document | Requirements | S4GA Specification | S4GA
Compliance | |-----------------------------|---
--|--------------------| | CS ADR-DSN.S.890 Monitoring | (a) A system of monitoring should be employed to indicate the operational status of the lighting systems. | S4GA ALCMS allows for individual light monitoring
(presents up to 16x operational parameters of each
light) | MEETS | | | (b) Where lighting systems are used for aircraft control purposes, such systems should be monitored automatically so as to provide an indication of any fault which may affect the control functions. This information should be automatically relayed to the air traffic service unit. | S4GA ALCMS provides automatic light failure
notification to air traffic controller | | | | (d) For a runway meant for use in runway visual range conditions less than a value of 550 m, the lighting systems detailed in Table S-1 should be monitored automatically so as to provide an indication when the serviceability level of any element falls below a minimum serviceability level specified in CS ADR-DSN.S.895(c) to (g). This information should be automatically relayed to the maintenance crew. | S4GA ALCMS provides automatic light failure notification as well as triggers pre-defined serviceability notifications. Critical notifications are immediately transferred to maintenance team via ALCMS main screen and and/or via email | | #### **Compliance of ALCMS Hardware** Table 2.4. Compliance of UR-201 Control & monitoring Unit with RED Directive | Document | Clause/Figure
/Appendix | Requirements | Test Verification
Report | S4GA
Compliance | |--|----------------------------|---|---|--------------------| | RED DIRECTIVE
2014/53/EU on the
harmonization of
the laws of the
Member States | Clause 3.1a | PN-EN 60950-1:2007 +A11:2009 +A1:2011 +A12:2011 +A2:2014 [EN 60950-
1:2006 +A11:2009 +A1:2010 +A12:2011 +A2:2013, IDT]
PN-EN 62311:2010 [EN 62311:2008, IDT]
PN-EN 62479:2011 [EN 62479:2010, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019
Report 2: 18/2019 | MEETS | | relating to the
making available on
the market of radio
equipment and
repealing Directive
1999/5/EC | Clause 3.1b | PN-ETSI EN 301 489-1 V2.1.1:2017 [ETSI EN 301 489-1 V2.1.1:2017, IDT] PN-ETSI EN 301 489-3 V2.1.1:2019 [ETSI EN 301 489-3 V2.1.1:2019, IDT] PN-EN 61000-6-1:2019 [EN 61000-6-1:2019, IEC 61000-6-1:2011, IEC 61000-6-3:2007 +A1:2011, IEC 61000-6-3:2006 +AMD1:2010, IDT] PN-EN 55032:2015 [EN 55032:2015, CISPR 32:2015, IDT] PN-EN IEC 61000-3-2:2019 [EN IEC 61000-3-2:2019, IEC 61000-3-2:2018, IDT] PN-EN 61000-3-3:2013 +A1:2019 [EN 61000-3-3:2013 +A1:2019, IEC 61000-3-3:2013 +AMD1:2017, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019
Report 2: 18/2019 | MEETS | | | PN-EN 61000-4-2:2011 [EN 61000-4-2:2009, IDT] PN-EN 61000-4-3:2007 +A1:2008 +IS1:2009 +A2:2011 [EN 61000-4-3:2006 +A1:2008 +IS1:2009 +A2:2010, IEC 61000-4-3:2006, IDT] PN-EN 61000-4-4:2013 [EN 61000-4-4:2012, IEC 61000-4-4:2012, IDT] PN-EN 61000-4-5:2014 +A1:2018 [EN 61000-4-5:2014 +A1:2017, IEC 61000-4-5:2014 +AMD1:2017, IDT] PN EN 61000-4-6:2014 [EN 61000-4-6:2014, IEC 61000-4-6:2014, IDT] PN-EN 61000-4-8:2010 [PN-EN 61000-4-8:2010, IDT] PN-EN 61000-4-11:2007 +A1:2017 [EN 61000-4-11:2004 +A1:2017, IEC 61000-4-11:2004/AMD1:2017, IDT] | | | |------------|--|---|--| | Clause 3.2 | PN-ETSI EN 300 220-1 V3.1.1:2017 [ETSI EN 300 220-1 V3.1.1:2017, IDT]
PN-ETSI EN 300 220-2 V3.2.1:2018 [ETSI EN 300 220-2 V3.1.1:2018, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019
Report 2: 18/2019 | | Table 2.5. Compliance of UR-201 Control & monitoring Unit with RoHS Directive | Document | Clause/Figure
/Appendix | Requirements | Test Verification
Report | S4GA
Compliance | |--|----------------------------|---------------------------------------|---|--------------------| | ROHS DIRECTIVE 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment | | PN-EN 50581:2013 [EN 50581:2012, IDT] | Military Institute of
Armament Technology
Accredited: Yes
Date of report:
Report 1: 23.12.2019
Report 2: 11.03.2020
Number of report:
Report 1: 34/2019
Report 2: 18/2019 | MEETS | Table 2.6. Compliance of UR-201 Control & monitoring Unit with FAA AC 150/5345-56B | Clause/Figure
/Appendix | Requirements | S4GA Specification | S4GA
Compliance | |--------------------------------------|--|---|--------------------| | | 4.3.1 ATC HMI. The ATC HMI must be a touchscreen monitor. The designer must specify the size, resolution and mounting requirements of the monitor. Monitor resolution must be capable of displaying the airport graphics. At a minimum the touchscreen monitor must have the following requirements: a. The monitor must be liquid crystal display (LCD) or activition to the hope of the control c | Processor - Intel Core i5-9400 (6 cores, from 2.90
GHz to 4.10 GHz, 9 MB cache) Chipset - Intel H370 RAM memory - 16 GB (DDR4 DIMM, 2666 MHz) Graphics card - supporting FullHD technology Intel UHD Graphics 630 M.2 SSD - 256 GB Sound - Integrated sound card Connectivity - Wi-Fi 4 (802.11 b / g / n) , LAN 10/100/1000 Mbps Connectors - USB 3.0 - x2, USB 3.0 - x2, Audio input / output - 3 RJ-45 (LAN) - 1 VGA (D-sub) - 1 HDMI - 1 AC-in (power input | EXCEEDS | | Par. 4.3
Hardware
Requirements | equivalent technology with a minimum resolution of 1024 x 768 pixels. CRT monitors are not acceptable. b. Integrated touchscreen technology. c. Non-glare, non-reflective viewing surface. 4.3.2 ATC Computer. The ATC Computer associated with the ATC HMI must have the following minimum requirements: a. Capable of being installed a minimum of 500 feet from the ATC HMI. Additional video/communication extension equipment may be required. b. Industrial Grade Computer (ICC) designed for industrial applications. This computer can be a separate component or integrated with the ATC HMI. c. All equipment must be assembled in NEMA 12 enclosures and connected as a complete system. This enclosure must be suitable for the local environment. d. Required communication equipment capable of transmitting the control and status information between the ATC HMI and the other ALCMS computers. e. Power for the ATC Computer must be from a circuit on the tower emergency power panel or by an independent uninterruptible power supply specified by the designer. | Monitor Touch 31.5 inch Elo 3202L Touch Screen Monitor IDS - specs Border color - black Active display area - 698.4 mm (H) x 392.9 mm (V) or 27.49 inches (H) x 15.47 inches (V) Dimensions - IR model : 762.8 mm (length) X 457.3 mm (height) X 61.6 mm (depth) Or 30.03 inches (height) X 18.00 inches (height) X 2.43 inches (D.) LCD technology - TFT LCD active matrix Mounting options - VESA MOUNT PER MIS-F, 400,400,6MM Input / output ports - Input : power input, USB type B (on touch), VGA, 2x HDMI, GPIO, DisplayPort , Audio Line in Outputs : Audio headphone output, RJ45 (for optional OSD remote control) Resolution - 1920x1080 at 60Hz Asnect ratio - 16:9 | EXCEEDS | | | | Workstation UPS: PowerWalker LINE-INTERACTIVE (1500VA 1350W 8xIEC AVR Rack) - specs Topology - Line-Interactive Apparent power - 1500 VA Effective power - 1350W Input voltage - 0 - 300 V Output voltage shape - Sinusoidal Output sockets - IEC - 8 RJ-11 (in / out) RJ-45 (in / out) Switching time - 2 - 6 ms Average charging time - 4 hours Communication interface - RS232 , USB Work signaling - LCD display , LED diodes Enclosure type - Tower , Rack Additional information - Automatic Voltage Regulation (AVR) , Function Emergency Power Off EPO (Emergency Power Off) | EXCEEDS | # **CHAPTER 3. Compliance of S4GA Solar Light and Control System with FAA requirements** #### **Compliance of S4GA Light with FAA requirements** Table 3.1. Compliance of SP-401 Solar Light FAA 150/5345-50B Specification for portable runway and taxiway lights | Clause No. | Clause Name | Requirements | S4GA Specification | Verification Document | S4GA Compliance | |-------------------|--|--|--|---|-----------------| | Clause
3.2.1 | Temperature | Exposure to any temperature from -
4°F to +122°F (-20°C to +50°C). | Temperature range: -20 to 50 °C (-4 to 122 °F) Optional: -40 to 80 °C (-40 to 176 °F) | SP-401S Runway Light
Datasheet | Exceeds | | | | | All S4GA lights can
withstand 240 km/h jet
blast | Laboratory: Warsaw Institute of
Aviation Accredited: Yes Date of
report: 17.12.2019 Number of
report: 41/CNTA/19/P | | | Clause
3.2.3 | Salt Spray (If metallic
materials are used). | Exposure to a salt-laden atmosphere. | Mounting is made of
marine grade stainless
steel (type 316) | Material Data Sheet
manufacturer: ThyssenKrupp
Model: Stainless Steel 1.4401 | Meets | | | | | Housing is manufactured
by injection molding
using UV-resistant Lexan
Resin SLX2271T | Material Data Sheet
manufacturer: Sabik
Model: Resin SLX2271T | | | Clause
3.2.5 | Weather | Exposure to all normal weather
conditions including exposure to
blowing dirt and sand (up to 150
mph),
rain, snow, ice, sleet, and hail | All S4GA lights can
withstand 240 km/h jet
blast | Laboratory: Warsaw Institute of
Aviation Accredited: Yes Date of
report: 17.12.2019 Number of
report: 41/CNTA/19/P | Meets | | | Photometric
Requirements.
L-863W, L-863W/Y, L-
863R/G, L-863Y,
L-863R, I-863G, and
L-863B Light Units | The photometric performance of each unit is defined in Table 1. | Please refer to table 1.1
Photometric Compliance | Tested by: Intertek
For reference to specific reports
please refer to table 1.1 | Exceeds | | Clause
3.3.1 | Photometric
Requirements.
L-863W, L-863W/Y, L-
863R/G, L-863Y,
L-863R, L-863G, and
L-863B Light Units | c. The light color must be equivalent to the aviation color chromaticity as defined by the International Commission on Illumination (CIE) boundary equations which can be referenced in ICAO Annex 14, Volume 1. | Please refer to table 1.2
Chromaticity Compliance | Tested by: Intertek For reference to specific reports please refer to table 1.2 | Exceeds | | | Rechargeable
Batteries. | Rechargeable batteries must be of a readily available type | 2x batteries,
independently connected
Type: VLRA (A valve
regulated lead—acid)
Battery description 9Ah,
12V | Standard available worldwide
Used in solar runway lighting,
UPS | Meets | | Clause
3.4.2 | Rechargeable that will power the light fixtures on a full charge for a minimum of 12 hours, while maintaining the photometric requirements contained in paragraph 3.3. | | Autonomy Level Runway
Light
Minimum intensity: 180
hrs
Maximum intensity: 60
hrs | Laboratory: Intertek
Accredited: Yes
Date of report: 31.12.2020
Number of reports:
201100613HZH-001R1
201100613HZH-001R1 | Exceeds | | | Rechargeable
Batteries. | Fixtures designed to use rechargeable batteries must be equipped with voltage monitoring to prevent excessive battery depletion. | SP-401 lights are
equipped with over- and
under-charge protection | SP-401S Runway Light
Datasheet | Meets | | Clause
3.4.2.1 | Battery Operation
after Recharge. | a. Following operation for at least 8 hours, the batteries must be capable of being charged sufficiently, within a maximum of 13 hours, to power the fixtures for a minimum of 12 hours. | SP-401 light can be re-
charged in 12 hrs and is
capable to operate for
180 hrs | Laboratory: Intertek
Accredited: Yes
Date of report: 31.12.2020
Number of reports:
201100613HZH-001R1
201100613HZH-001R1 | Exceeds | | Clause
3.4.2.2 | Solar Charged
Batteries. | Solar charged batteries must be of a type that allows for a minimum equivalent peak of 3 sun hours to maintain operation at full intensity level and 1.5 sun hours in flashing mode. | In 3 hrs SP-401 light will
be charged to work for
the next 60 hrs in
flashing mode
SP-401 is equipped with
20W solar panel
combined with MPPT
technology
(maximum power point
tracking that increases
solar charging rate) | SP-401S Runway Light
Datasheet | Exceeds | |-------------------|-----------------------------|--|--|--|---------| | Clause
3.4.2.2 | Solar Charged
Batteries. | They must be capable of powering the lighting units for a minimurn of 8 hours of operation. | | | Exceeds | | Clause
3.4.3 | Lamp | The lamp used with the L-863W, L-
863WY, L-863R/G, L-863Y, L-863R, I-
863G, and L-863B
units must have a rated life of at
least 1000 hours. | SP-401 lights use LED as
a source of life. Lifespan
of LED is 100.000 hrs | SP-401S Runway Light
Datasheet | Exceeds | | Clause 3.6 | Housing | The housing must be fabricated from
high-impact plastic, nonferrous
metal, or from ferrous metal
suitably protected against corrosion. | | | Meets | | Clause 3.6 | Housing | high-impact plastic | SP-401 lighting unit has
been tested and has
highest impact rating of
IK10 | Laboratory: OBAC Laboratories
Accredited: Yes
Date of report: 12.11.2020
Number of reports:
2/LL/304/2020/A | Exceeds | | | | | | | | | Clause
4.3.7 | Solar Radiation Test | A sunshine test must be conducted in accordance with MIL-STD-810F, Method 505.4, paragraph 4.4.3, Procedure II for all light fixtures with nonmetallic exterior
parts. The material must be subjected to a minimum of 56 cycles. The test unit must operate and perform all specified functions after this test. Any evidence of deterioration or alteration of the light fixture must be cause for rejection. For plastic optical lenses or covers, the photometric performance must be measured after this test. | SP-401 light is made of UV-resistant materials Glass Dome: not resistant to UV Housing: low resistance to UV Stainless steel and aluminum parts: low resistance to UV | Test: Performed
Laboratory: S4GA Internal
Laboratory
Date of report: 10.01.2020
Number of report: AF/10/2020/A | Meets | | Clause
4.3.8 | Salt Fog Test | If the fixture has external metal components, a salt-fog test must be conducted on the assembled light fixture in accordance with MIL-STD-810F, Method 509.4, paragraph 4.5.2, Procedure. The test duration must be 48 hours exposure and 48 hours drying. Any evidence of damage, rust, pitting, or corrosion (except for sacrificial coatings) must be cause for rejection. | SP-401 light is made of salt resistant materials Glass Dome: non-corrosive Housing: non-corrosive Polycarbonate Stainless steel, grade 316: non-corrosive aluminum: non-corrosive | Test: Performed
Laboratory: S4GA Internal
Laboratory
Date of report: 20.01.2020
Number of report: AF/09/2020/A | Meets | | Clause
4.3.10 | Weight | The complete lighting unit must not exceed 35 lb (16 kg) per HF-STD-001. | SP-401 unit weight is
14.2kg | SP-401S Runway Light
Datasheet | Meets | | Clause
4.3.4 | Low Temperature
Test. | 16 hrs (12 hrs standby, 4 hrs
operating), in -20 deg. Celsius | SP-401 unit can operate
in -40 deg Celsius | Test: Performed
Laboratory: S4GA Internal
Laboratory
Date of report: 5.02.2020
Number of report: AF/11/2020/A | Meets | | Clause
4.3.5 | High Temperature
Test. | 16 hrs (12 hrs standby, 4 hrs
operating), in +50 deg. Celsius | SP-401 unit can operate
in +80 deg Celsius | Test: Performed
Laboratory: S4GA Internal
Laboratory | Meets | | | | | Date of report: 3.02.2020
Number of report: AF/12/2020/A | | |------------|--|---|---|---------| | Clause 3.7 | | UR-201 Control & Monitoring Unit in combination with ALCMS (airfield lighting control and monitoring unit) provide: - Air-to-ground remote control - Ground-to-Ground remote Contol - Individual Light Monitoring | Refer to table "Radio Control
Compliance" | Exceeds | Table 3.2. Compliance of SP-401 lights with FAA frangibility requirements | Document | Clause/Figure
/Appendix | Requirements | S4GA
Specification | Test Verification Report | S4GA
Compliance | |---|----------------------------|---|---|---|--------------------| | FAA AC 150-
5345-46E
Specification
For Runway
And Taxiway
Light Fixtures | Clause 3.4.2.1 | Yield Device. a. Each elevated light fixture must have a yield point near the point or position where it attaches to the base plate or mounting stake. (1) The yield point must be no more than 1.5 inches (38 mm) above the threaded interface of the elevated light cover (see AC 150/5345-42 for more information). See AC 150/5340-30 for additional information about light fixture yield point above grade location. (2) The yield point must give way before any other part of the fixture is damaged, and must withstand a bending moment of 150 foot-pounds (203 Newton-meters (N-m) without failure. (3) The yield point must cleanly separate from the mounting system before the bending moment reaches 500 foot-pounds (678 N-m). (4) If the yield device uses a threaded connection to the base plate or stake, it should have a male external thread with either 2 inch (50.80 mm)-11.5 National Pipe Thread (NPT) or National Pipe Straight (NPS) thread, or 1.5 inch (38.10 mm)-12 Unified Fine (UNF) thread. | SP-401 elevated
light is fully
compliant with
FAA frangibility
requirements | Institute of Research and
Certification (Poland)
Accredited: Yes
Date of report:
19.03.2021
Number of report:
LL/039/2021 | MEETS | | | | | | | | Table 3.3. Compliance of SP-401 lights with jet blast requirements of FAA | Autohrit
y | Document | Clause/Figure/App
endix | Requirements | S4GA
Specification | Test Verification Report | S4GA
Compliance | |---------------|---|----------------------------|---|--|---|--------------------| | FAA | FAA AC 150/5345-
50B Specification
For Portable
Runway And
Taxiway Lights | Clause 3.2.2 | Exposure to wind speeds up to
150 mph (240 km/h) from any
direction | All S4GA lights
can withstand
240 km/h wind
loading | Laboratory. Warsaw institute
of Aviation
Accredited: Yes
Date of report: 17.12.2019
Number of report:
41/0NTA/19/P | MEETS | Table 2.4. Compliance of S4GA ALCMS Computer Interface with FAA AC 150/5345-56B | Norm | Clause/Figure
/Appendix | Requirements | S4GA Specification | S4GA
Compliance | |--|----------------------------|--|--|--------------------| | | | 3. ALCMS General System requirements - split of
BASIC and OPTIONAL requirements for ALCMS | S4GA ALCMS follows basic & optional items listed in
General System requirements | MEETS | | Specification for
L-890
Airport Lighting | L-890 5. Con require | 4. Design requirements - Hardware min.
requirements | S4GA ALCMS hardware specs are in line with Design requirements listed (for non-wire infrastructure part) | MEETS | | Control and
Monitoring
System (ALCMS) | | 5. Control Design requirements - Software requirements | S4GA ALCMS hardware specs are in line with Control
Design requirements listed (for non-wire infrastructure
part) | MEETS | | | | 6. Monitoring requirements (Control Only) - Type
B | S4GA ALCMS meets type A requirements | EXCEEDS | | 6. Monitoring requirements (Basic Monitoring) -
Type B | S4GA ALCMS meets type B requirements | EXCEEDS | |---|--|---------| | 6. Monitoring requirements (Advanced
Monitoring) - Type C | S4GA ALCMS meets type C requirements - Partly
Compliant | EXCEEDS | | Monitoring requirements (SMGCS ready, individual lamps out monitoring) - Type D | S4GA ALCMS meets type C requirements - Partly
Compliant | EXCEEDS | | 7. FailSafe Design requirements - protection against failure of ALMCS | S4GA ALCMS & system logic meets Type B failsafe | MEETS | | Manufacturer Support - access to Manuf. support | S4GA ALCMS has 24/7/365 support available | MEETS | # **CHAPTER 4. Compliance of S4GA Solar Lights and Control System with CASA/MOS requirements** #### Compliance of S4GA Lights with CASA/MOS requirements Table 3.1. Compliance of SP-401 Solar Light with Chapter 9 / Division 10 Rwy Lights – Low Intensity Light Fixtures | Clause No. | Clause Name | Requirements | S4GA Specification | Verification Document | S4GA
Compliance | |---|---
--|--|--|--------------------| | Part 139
(Aerodromes)
Manual of
Standards
2019
Clause 9.52 | Characteristics of
runway edge lights —
non-instrument or
non-precision
approach runway | (a) are fixed, and (b) are omnidirectional; and (c) show variable white; and (d) if elevated — have light distribution that is uniform for the 360° horizontal projection of the light; and (e) for a lighting system set at low intensity — have: (i) a minimum light intensity in accordance with that shown in Figure 9.75 (1); and (ii) a main beam which projects light between 1° and 7° above the horizontal at: (A) a minimum average intensity of not less than 100 cd | SP-401 Runway Edge Light
Light Output
Optics : Omni-directional
Color: White | Laboratory: TUV
Accredited: Yes
Date of report: 07.09.2022
Number of report:
53511172/1 | EXCEEDS | | | | | | Laboratory: Intertek
Accredited: Yes
Date of report: 20.08.2018
Number of report:
180400427HZH-004 | | | Part 139
(Aerodromes)
Manual of
Standards
2019
Clause 9.62 | Characteristics of
temporarily
displaced threshold
lights | Temporarily displaced threshold lights must conform to the following requirements: (a) subject to paragraph (b), an array on each side of the runway must consist of 5 lights; (b) for a runway whose width is 30 m or less — each side array may consist of 3 lights instead of 5; (c) the lights must be spaced 2.5 m apart; (d) for runways with visual circling or circuit operations — the innermost light of each side array may be a fixed, omnidirectional light showing green in all angles of azimuth; (e) the outer 4 or 2 lights, as appropriate, of each side array must be fixed, unidirectional lights showing green in the direction of approach over not less than 38°, and not more than 180°, of azimuth; (f) the light distribution in the direction of approach must be as close as possible to that of the runway edge lights; (g) the light intensity must be as close as possible to 1.5 times that of the runway edge lights but not be less than that of the runway edge lights but not be less than that of the runway edge | SP-401 Runway Threshold
Light
Light Output
(unidirectional): 450 cd
Color: Green | Laboratory: Intertek
Accredited: Yes
Date of report: 20.08.2018
Number of report:
180400427HZH-004 | | | | | | | | | | | | constitute part of a declared stopway — blue. Note Examples of when a runway located before a displaced threshold is available for aircraft use include use for take-offs using a runway starter extension, and landings from the opposite direction. (2) For subsection (1), runway edge lights must be: (a) bi-directional light fittings; or (b) separate light fittings installed back to back. (3) If the portion of runway before a displaced threshold is closed to aircraft operations, all the runway lights on the portion must be extinguished | (for extended visibility
range)
Optics 2: Omni-directional
(for circuiting guidance)
Color: White | | | |---|----------------|---|---|--|---------| | Part 139
(Aerodromes)
Manual of
Standards
2019
Clause 9.65 | | Runway end lights of low intensity or medium intensity must: (a) be fixed; and (b) be unidirectional; and (c) show red in the direction of the runway over not less than 38°, and not more than 180°, of azimuth; and (d) for the red light—have an intensity that is not less than one-quarter, and not more than one-half, that of the runway edge lights; and (e) have a light distribution in the direction of the runway that is as close as possible to that of the runway edge lights; and (f) have a minimum light intensity in accordance with Table 9.75 (2) and Figures 9.75 (1) and 9.75 (2). (2) Lowintensity and medium-intensity runway end lights must be inset lights if (a) the runway is equipped with high-intensity runway end lights; or (b) a stopway or runway starter extension is provided beyond the declared runway end; or (c) it is not physically possible for elevated lights to be installed. (3) If the runway end coincides with the runway threshold, the following may be used: (a) a bi-directional light fitting, (b) separate light fittings, installed back to back | SP-401 Runway End Light
Light Output
(unidirectional): 320 cd
Color: Red | | MEETS | | Part 139
(Aerodromes)
Manual of
Standards
2019
Clause 9.67 | | (1) Where an aircraft turn pad, runway bypass pad or runway starter extension is provided on a runway that has runway edge lights, the edge of the relevant pad or starter extension must be provided with blue edge lights. (2) For subsection (1), edge lights must be located not less than 0.6 m, and not more than 1.8 m, outside the edge of the relevant pad or starter extension. (3) If the beginning of the splay into a relevant pad or starter extension is more than 1.0 m from the previous runway edge light, a blue edge light must be located where the pad or extension commences. (4) Relevant pad edge lights must be provided to mark any change of direction along the side of the pad. (5) If a side of the relevant pad is longer than 30 m, equally-spaced blue edge lights must be provided along that side, with spacing not exceeding 30 m. (6) Edge lights required under subsection (1) must have the same characteristics as taxiway edge lights under section 9.93 | SP-401 Taxiway Edge
Light
Color: blue | | EXCEEDS | | Part 139
(Aerodromes)
Manual of
Standards
2019
Clause 9.68 | Stopway lights | Runway end lights of low intensity or medium intensity must: (a) be fixed; and (b) be unidirectional; and (c) show red in the direction of the runway over not less than 38°, and not more than 180°, of azimuth, and (d) for the red light — have an intensity that is not less than one-quarter, and not more than one-half, that of the runway edge lights; and (e) have a light distribution in the direction of the runway that is as close as possible to that of the runway edge lights; and (f) have a minimum light intensity in accordance with Table 9.75 (2) and Figures 9.75 (1) and 9.75 (2). (2) Lowintensity and medium-intensity runway end lights must be inset lights if: (a) the runway is equipped with high-intensity runway end lights; or (b) a stopway or runway starter extension is provided beyond the declared runway end; or (c) it is not physically possible for elevated lights to be installed. (3) If the runway end coincides with the runway threshold, the following may be used: (a) a bi-directional light fitting; (b) separate light fittings, installed back to back | SP-401 Runway End Light
Light Output
(unidirectional): 320 cd
Color: Red | Laboratory: Intertek
Accredited: Yes
Date of report: 20.08.2018
Number of report:
180400427HZH-003 | MEETS | 19 ### **Summary** S4GA delivers World's Safest Runway Lighting. Safety and reliability are the DNA of S4GA. Every product that we sell, every modification that we implement is done with the same aim – to increase safety of airport flight operations and ensure airport availability 24/7. Our airfield lighting products are compliant with international aviation standards and requirements issued by global civil aviation institutions: - ICAO Annex 14 - ICAO Aerodrome Design Manual - EASA CS ADR-DSN - CASA Part 139 (Aerodromes) Manual of Standards 2019 (as amended) - FAA AC 150-5345-46E, AC 150 5220-23,
AC 150/5345-50B, AC 150/5345-56B - RED DIRECTIVE 2014/53/EU - RoHS DIRECTIVE 2011/65/EU S4GA products also meet international military standards given in STANAG 3534, UFC 3-535-01, ETL 11-27. S4GA airfield lighting has passed multiple tests provided by independent accredited laboratories such as Intertek, Military Institute of Armament Technology, Warsaw Institute of Aviation. The products have been tested on photometric & chromaticity, frangibility, jet blast resistance, ingress protection, EMC. ### **International Aviation Documents** - 1. ICAO Annex 14, Volume I, 7th Edition dated July 2016 - 2. ICAO Aerodrome Design Manual, Doc 9157 - 3. EASA CS ADR-DSN - 4. Part 139 (Aerodromes) Manual of Standards 2019 (as amended) - 5. FAA AC 150-5345-46E Specification For Runway And Taxiway Light Fixtures - 6. FAA AC 150 5220-23 Frangible Connections - 7. FAA AC 150/5345-50B Specification for portable runway and taxiway lights - 8. FAA AC 150/5345-56B, Specification for L-890 Airport Lighting Control and Monitoring System (ALCMS) - 9. RED DIRECTIVE 2014/53/EU on the harmonization of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC - 10. RoHS DIRECTIVE 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment Solutions4ga sp. z o. o. 26-600 Biznesowa 4 Radom, Poland